Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[tetraaqua (μ_{6}-benzene-1,2,4,5tetracarboxylato)dicobalt(II)] dihydrate]

Yen-Hsiang Liu* and Miao-Tzu Ding

Department of Chemistry, Fu Jen Catholic University, Hsinchuang, Taipei, Taiwan Correspondence e-mail: chem2022@mails.fju.edu.tw

Received 23 May 2007; accepted 28 May 2007

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA ; \mathrm{H}$ atom completeness 72%; disorder in solvent or counterion; R factor $=0.038$; $w R$ factor $=0.103$; data-to-parameter ratio $=14.4$.

The asymmetric unit of the title coordination polymer, $\left\{\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains two crystallographically distinct $\mathrm{Co}^{\mathrm{II}}$ cations, located on inversion centers. Each $\mathrm{Co}^{\mathrm{II}}$ cation exists in an octahedral coordination environment formed by two water molecules and four carboxylate groups. The deprotonated benzene-1,2,4,5-tetracarboxylic acid ligand, with the center of the benzene ring located on an inversion center, bridges $\mathrm{Co}^{\text {II }}$ cations to form a (3,4)-connected threedimensional network that is topologically related to $\mathrm{Pt}_{3} \mathrm{O}_{4}$ (waserite). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between coordinated water molecules and carboxylate groups helps to stabilize the crystal structure. One water molecules is disordered over two positions, with almost equal occupancies.

Related literature

For related structures, see: Kumagai et al. (2002); O’Keeffe et al. (2000); Wells (1977); Yang et al. (2003).

Experimental

Crystal data
$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=238.04$
$\gamma=93.161$ (7) ${ }^{\circ}$
Triclinic, $P \overline{1}$
$a=6.9362$ (7) \AA
$b=7.4559$ (6) \AA
$c=8.2797$ (7) \AA
$\alpha=90.342(8)^{\circ}$
$\beta=109.848(7)^{\circ}$

Data collection

Bruker P4 diffractometer 1570 reflections with $I>2 \sigma(I)$
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.685, T_{\text {max }}=0.811$
2314 measured reflections
1883 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$	131 parameters
$w R\left(F^{2}\right)=0.103$	H-atom parameters constrained
$S=1.05$	$\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
1883 reflections	$\Delta \rho_{\min }=-0.77 \AA^{-3}$

Table 1
Selected bond lengths (A).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.065(2)$	$\mathrm{Co} 2-\mathrm{O} 2$	$2.083(2)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.046(2)$	$\mathrm{Co} 2-\mathrm{O} 4^{\mathrm{i}}$	$2.0996(19)$
$\mathrm{Co} 1-\mathrm{O} 21$	$2.151(2)$	$\mathrm{Co} 2-\mathrm{O} 22$	$2.105(2)$

Symmetry code: (i) $x, y+1, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 21 A \cdots \mathrm{O} 4^{\text {ii }}$	0.85	2.03	2.864 (3)	169
$\mathrm{O} 21-\mathrm{H} 21 B \cdots \mathrm{O} 31 A$	0.82	2.17	2.876 (6)	144
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O}^{\text {i }}$	0.84	2.25	2.848 (3)	129
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 1$	0.84	1.99	2.790 (3)	157

Data collection: XSCANS (Bruker, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) ; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Science Council and Fu Jen Catholic University, Taiwan, for financial support.

[^0]
metal-organic compounds

References

Bruker (1991). XSCANS. Version 4.27. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kumagai, H., Kepert, C. J. \& Kurmoo, M. (2002). Inorg. Chem. 41, 3410-3422.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. \& Yaghi, O. M. (2000). J. Solid State Chem. 152, 3-20.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wells, A. F. (1977). Three-dimensional Nets and Polyhedra, pp. 91-103. New York: John Wiley \& Sons Inc.
Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. \& Ng, S. W. (2003). Acta Cryst. E59, m849-m850.

supplementary materials

Poly[[tetraaqua $\left(\mu_{\mathbf{6}}\right.$-benzene-1,2,4,5-tetracarboxylato)dicobalt(II)] dihydrate]

Y.-H. Liu and M.-T. Ding

Comment

As shown in figure 1, a half of the Benzene-1,2,4,5-tetracarboxylic acid ($\mathrm{H}_{4} \mathrm{btec}$) is observed in the crystallographic asymmetric unit with center of the benzene ring located on a crystallographic $\overline{1}$ position. The observation of symmetrical $\mathrm{C}=\mathrm{O}$ bond lengths ranges from 1.250 (2) to 1.265 (3) \AA indicates that all of the carboxyl groups of the H_{4} btec are deprotonated to become the btec ${ }^{4-}$ anion. The asymmetric unit of the title compound contains two crystallographic distinct $\mathrm{Co}^{\mathrm{II}}$ cations, located on crystallographic inversion centers with site occupation factor of 0.5 . Each Co ion exists in an octahedral coordination environment (Table 1) formed by two water molecules and four carboxylate groups. The btec ${ }^{4-}$ ligands bridges Co ions to form a three-dimensional metal-organic framework with one-dimensional channels in the [010] direction that are occupied by disordered guest water molecules and coordinated water molecules (Fig. 2). The formula of the compound is assigned to be $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$. A Ni ${ }^{\text {II }}$ analogue, and a $\mathrm{Co}^{\mathrm{II}}$-btec coordination polymer with different contents of unit-cell packing were previously reported (Yang et al., 2003; Kumagai et al., 2002).

The network topology of the title compound is analyzed. The carbon atom of the carboxylate group serves as a simple three-connected node linking benzene ring and two Co ions. The benzene ring of the Benzene-1,2,4,5-tetracarboxylate ligand serves as a planar four-connected node. If coordinated water molecules are neglected, each Co ion also serves as a planar four-connected secondary building unit on the basis of four coordinated carboxylate groups. As a result, the title compound represents a new example of a (3,4)-connected net that is topologically related to $\mathrm{Pt}_{3} \mathrm{O}_{4}$ (waserite) (O'Keeffe et al., 2000; Wells, 1977).

The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydroge bonding between coordinated water molecules and carboxyl groups helps to stabilize the crystal structure (Table 2).

Experimental

All reagents and solvents were used as obtained without further purification. $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol}), \mathrm{H}_{4} \mathrm{btec}(0.5 \mathrm{mmol})$ and $\mathrm{NaOH}(1.0 \mathrm{mmol})$ were dissolved in 8 ml of distilled water. The mixture was sealed in a Teflon-lined stainless steel vessel and held at 383 K for 72 h . The vessel was gradually cooled to room temperature, and red crystals suitable for crystallographic analysis were obtained after 4 d .

Refinement

The C-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the coordinated water molecules were located in a difference Fourier map, and refined as riding model with $\mathrm{O}-\mathrm{H}$ distances range from 0.82 to $0.85 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The PLATON SQUEEZE procedure was used to treat regions of disordered guest molecules that could not be judiciously modeled in terms

supplementary materials

of atomic sites (Spek, 2003). The number of electrons thus located, 17 per unit cell, is assigned to two molecules of water solvent and is included in the formula, formula weight, calculated density, μ and $\mathrm{F}(000)$. There is difference between the reported and calculated values. Two largest residual densities located from the difference Fourier map separated by $1.93 \AA$ are assigned to two disordered guest water molecules O31A and O31B. The refinement of relative site occupation factor leads to 0.53 and 0.47 for O 31 A and O 31 B , respectively. No attempt was made to locate hydrogen atoms of the disordered guest water molecules.

Figures

Poly[[tetraaqua(μ_{6}-benzene-1,2,4,5-tetracarboxylato)dicobalt(II)] dihydrate]

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=238.04$	$F_{000}=240$
Triclinic, $P \overline{\mathrm{I}}$	$D_{\mathrm{x}}=1.966 \mathrm{Mg} \mathrm{m}^{-3}$
Hall symbol: -P 1	Mo K 2 radiation
$a=6.9362(7) \AA$	$\lambda=0.71073 \AA$
$b=7.4559(6) \AA$	Cell parameters from 34 reflections
$c=8.2797(7) \AA$	$\theta=5.6-12.8^{\circ}$
$\alpha=90.342(8)^{\circ}$	$\mu=2.14 \mathrm{~mm}^{-1}$
$\beta=109.848(7)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=93.161(7)^{\mathrm{o}}$	Column, red
$V=402.00(6) \AA^{3}$	$0.3 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Bruker P4
diffractometer
Radiation source: sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
20/ ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.685, T_{\text {max }}=0.811$
2314 measured reflections
1883 independent reflections 1570 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-9 \rightarrow 1$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$
3 standard reflections
every 24 reflections
intensity decay: 1.0%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.103$
$S=1.05$
1883 reflections
131 parameters

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0533 P)^{2}+0.4406 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.77 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Co1	0	0	0.5	$0.01624(16)$	
Co2	0.5	0.5	0.5	$0.01426(16)$	
O1	$0.1694(3)$	$0.2325(3)$	$0.6119(3)$	$0.0223(4)$	
O2	$0.4875(3)$	$0.3576(3)$	$0.7123(3)$	$0.0227(4)$	
O3	$0.2645(3)$	$-0.1283(3)$	$0.5378(3)$	$0.0268(5)$	
O4	$0.5570(3)$	$-0.2620(3)$	$0.6499(2)$	$0.0175(4)$	
O21	$0.0391(4)$	$0.0928(4)$	$0.2669(3)$	$0.0342(6)$	
H21A	0.151	0.1538	0.2826	0.051^{*}	0.051^{*}
H21B	-0.0337	0.0886	0.1656	$0.0265(5)$	
O22	$0.1793(3)$	$0.5155(3)$	$0.3953(3)$	0.04^{*}	
H22A	0.1224	0.6092	0.404		

H22B	0.1421	0.4397	0.4559	0.04^{*}	
O31A	$-0.0980(8)$	$0.2254(8)$	$-0.0766(7)$	$0.0469(18)$	$0.527(8)$
O31B	$-0.1415(13)$	$0.4510(14)$	$0.0178(11)$	$0.089(4)$	$0.473(8)$
C1	$0.3523(4)$	$0.2411(4)$	$0.7155(3)$	$0.0155(5)$	
C2	$0.4193(4)$	$0.1081(4)$	$0.8574(3)$	$0.0150(5)$	
C3	$0.4640(4)$	$-0.0677(4)$	$0.8333(3)$	$0.0136(5)$	
C4	$0.4246(4)$	$-0.1563(4)$	$0.6596(3)$	$0.0145(5)$	
C5	$0.4549(4)$	$0.1741(4)$	$1.0238(3)$	$0.0163(5)$	
H5A	0.4241	0.2912	1.0399	0.02^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0143(3)$	$0.0151(3)$	$0.0165(3)$	$0.00031(19)$	$0.0018(2)$	$-0.00175(19)$
Co2	$0.0178(3)$	$0.0117(3)$	$0.0122(2)$	$-0.00056(19)$	$0.00392(19)$	$-0.00044(18)$
O1	$0.0210(10)$	$0.0161(10)$	$0.0224(10)$	$-0.0007(8)$	$-0.0018(8)$	$0.0031(8)$
O2	$0.0236(11)$	$0.0234(11)$	$0.0181(9)$	$-0.0065(8)$	$0.0042(8)$	$0.0048(8)$
O3	$0.0238(11)$	$0.0343(13)$	$0.0170(10)$	$0.0117(9)$	$-0.0015(8)$	$-0.0091(9)$
O4	$0.0177(9)$	$0.0163(9)$	$0.0170(9)$	$0.0033(7)$	$0.0035(8)$	$-0.0042(7)$
O21	$0.0222(11)$	$0.0541(16)$	$0.0214(11)$	$-0.0087(11)$	$0.0028(9)$	$0.0053(10)$
O22	$0.0219(10)$	$0.0225(11)$	$0.0346(12)$	$0.0025(9)$	$0.0088(9)$	$-0.0006(9)$
O31A	$0.038(3)$	$0.059(4)$	$0.040(3)$	$-0.001(3)$	$0.009(2)$	$0.004(3)$
O31B	$0.068(6)$	$0.092(7)$	$0.067(5)$	$-0.026(5)$	$-0.023(4)$	$0.007(5)$
C1	$0.0210(13)$	$0.0127(12)$	$0.0120(11)$	$0.0002(10)$	$0.0048(10)$	$-0.0032(9)$
C2	$0.0143(12)$	$0.0158(12)$	$0.0127(11)$	$-0.0026(10)$	$0.0025(10)$	$-0.0019(9)$
C3	$0.0140(12)$	$0.0147(12)$	$0.0107(11)$	$-0.0023(9)$	$0.0032(9)$	$-0.0035(9)$
C4	$0.0174(12)$	$0.0129(12)$	$0.0130(11)$	$-0.0008(10)$	$0.0052(10)$	$-0.0026(9)$
C5	$0.0201(13)$	$0.0131(12)$	$0.0158(12)$	$0.0007(10)$	$0.0062(10)$	$-0.0018(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Co} 1-\mathrm{O} 1$	$2.065(2)$
$\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.065(2)$
$\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.046(2)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.046(2)$
$\mathrm{Co} 1-\mathrm{O} 21$	$2.151(2)$
$\mathrm{Co} 1-\mathrm{O} 21^{\mathrm{i}}$	$2.151(2)$
$\mathrm{Co} 2-\mathrm{O} 2^{\mathrm{ii}}$	$2.083(2)$
$\mathrm{Co} 2-\mathrm{O} 2$	$2.083(2)$
$\mathrm{Co} 2-\mathrm{O} 4^{\mathrm{iii}}$	$2.099(19)$
$\mathrm{Co} 2-\mathrm{O} 4^{\mathrm{iv}}$	$2.0996(19)$
$\mathrm{Co} 2-\mathrm{O} 22$	$2.105(2)$
$\mathrm{Co} 2-\mathrm{O} 22^{\mathrm{iii}}$	$2.105(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.265(3)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.250(3)$
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 3$	$180.00(12)$

$\mathrm{O} 3-\mathrm{C} 4$	$1.250(3)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.264(3)$
$\mathrm{O} 4-\mathrm{C} 2^{\mathrm{v}}$	$2.0996(19)$
$\mathrm{O} 21-\mathrm{H} 21 \mathrm{~A}$	0.8472
$\mathrm{O} 21-\mathrm{H} 21 \mathrm{~B}$	0.8188
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~A}$	0.8359
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B}$	0.8447
$\mathrm{C} 1-\mathrm{C} 2$	$1.508(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(4)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.395(3)$
$\mathrm{C} 3-\mathrm{C} 5^{\mathrm{vi}}$	$1.398(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.511(3)$
$\mathrm{C} 5-\mathrm{C} 3^{\mathrm{vi}}$	$1.398(4)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.93
$\mathrm{O} 4^{\mathrm{iv}}-\mathrm{Co} 2-\mathrm{O} 22^{2 i}$	$96.15(8)$

sup-4

$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Co} 1-\mathrm{O} 1$	89.65 (9)	$\mathrm{O} 22-\mathrm{Co} 2-\mathrm{O} 22^{\mathrm{ii}}$	180.0000 (10)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1$	90.35 (9)	C1-O1-Col	125.58 (19)
$\mathrm{O} 3-\mathrm{Col-O1}{ }^{\mathrm{i}}$	90.35 (9)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Co} 2$	126.83 (18)
O3-Col-O1 ${ }^{\text {i }}$	89.65 (9)	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Col}$	137.74 (18)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Co}^{\text {v }}$	126.45 (17)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 21$	94.40 (10)	Co1-O21-H21A	113.9
$\mathrm{O} 3-\mathrm{Col-O21}$	85.60 (10)	Col-O21-H21B	134.3
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 21$	85.35 (9)	$\mathrm{H} 21 \mathrm{~A}-\mathrm{O} 21-\mathrm{H} 21 \mathrm{~B}$	111.6
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 21$	94.65 (9)	$\mathrm{Co} 2-\mathrm{O} 22-\mathrm{H} 22 \mathrm{~A}$	121.8
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Col-O} 21^{\text {i }}$	85.60 (10)	$\mathrm{Co} 2-\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B}$	99.9
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 21^{\text {i }}$	94.40 (10)	$\mathrm{H} 22 \mathrm{~A}-\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B}$	105.4
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 21^{\text {i }}$	94.65 (9)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.3 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Col-O} 21^{\text {i }}$	85.35 (9)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	115.2 (2)
$\mathrm{O} 21-\mathrm{Co} 1-\mathrm{O} 21^{\mathrm{i}}$	180.0000 (10)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	120.4 (2)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 2$	180.0000 (10)	C3-C2-C5	119.3 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Co} 2-\mathrm{O} 4{ }^{\text {iii }}$	91.12 (8)	C3-C2-C1	124.0 (2)
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 44^{\text {iii }}$	88.88 (8)	C5-C2-C1	116.4 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Co} 2-\mathrm{O} 4{ }^{\text {iv }}$	88.88 (8)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5{ }^{\text {vi }}$	119.4 (2)
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 44^{\text {iv }}$	91.12 (8)	C2-C3-C4	124.2 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{O} 4{ }^{\text {iv }}$	180	$\mathrm{C} 5{ }^{\text {vi }}-\mathrm{C} 3-\mathrm{C} 4$	116.4 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Co} 2-\mathrm{O} 22$	86.24 (9)	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$	123.9 (2)
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 22$	93.76 (9)	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	119.9 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{O} 22$	96.15 (8)	O4-C4-C3	116.1 (2)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Co} 2-\mathrm{O} 22$	83.85 (8)	$\mathrm{C} 2-\mathrm{C} 5-\mathrm{C} 3{ }^{\text {vi }}$	121.4 (2)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 22^{\mathrm{ii}}$	93.76 (9)	C2-C5-H5A	119.3
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 22^{\text {ii }}$	86.24 (9)	$\mathrm{C} 3{ }^{\text {vi }}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.3
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{O} 22^{\text {ii }}$	83.85 (8)		

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y+1, z$; (iv) $-x+1,-y,-z+1$; (v) $x, y-1, z$; (vi) $-x+1,-y,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21 — \mathrm{H} 21 \mathrm{~A} \cdots \mathrm{O} 4^{\text {iv }}$	0.85	2.03	$2.864(3)$	169
$\mathrm{O} 21 — \mathrm{H} 21 \mathrm{~B} \cdots \mathrm{O} 31 \mathrm{~A}$	0.82	2.17	$2.876(6)$	144
$\mathrm{O} 22 — \mathrm{H} 22 \mathrm{~A} \cdots \mathrm{O} 3^{\text {iii }}$	0.84	2.25	$2.848(3)$	129
O22—H22B $\cdots \mathrm{O} 1$	0.84	1.99	$2.790(3)$	157
Symmetry codes: (iv) $-x+1,-y,-z+1$; (iii) $x, y+1, z$.				

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2263).

